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Abstract— Filtering involves the manipulation of the spectrum
of a signal by passing or blocking certain portions of the
spectrum, depending on the frequency of those portions.
Filters are designed according to what kind of manipulation of
the signal is required for a particular application. This paper
introduces a first generation IIR digital filters that unifies the
classical digital Butterworth filters and the well known
maximally at FIR filters. In the design of IIR filters, a
commonly used approach is called the bilinear transformation.
This design begins with the transfer function of an analog filter,
and then performs a mapping from the s-domain to the z-
domain. New closed form expressions are provided, and a
straight forward design technique is described. The first
generation IR digital filters have more zeros than poles (away
from the origin) and their (monotonic) square magnitude
frequency responses are maximally flat at w = 0 and at w = .
Another result of the paper is that, for a specified cut-off
frequency and a specified number of zeros, there is only one
valid way in which to split the zeros between 7 = -1 and the
pass band. This technique also permits continuous variation of
the cut-off frequency. IIR filters having more zeros than poles
are of interest, because often, to obtain a good trade-off
between performance and implementation complexity, just a
few poles are best. The results have been demonstrated with
the aid of a MATLAB script. The design process of a digital
filter is long and tedious if done by hand.
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[.  INTRODUCTION

Probably the best known and most commeonly used
method for the design of IIR digital filters is the bilinear
transformation of the classical analog filters (the
Butterworth, Chebyshev [ and II, and Elliptic filters). Cne
advantage of this technique is the existence of formulas for
these filters. However, the numerator and denominator of
such IIR filters have equal degree. It is sometimes desirable
to be able to design filters having more zeros than poles
(away from the origin) to obtain an improved compromise
between performance and implementation complexity.

The first generalized formulas used in this paper unify the
classical digital Bufterworth filters and the well known
maximally at FIR filters described by Herrmann. The new
maximally at low pass IIR filters have an unequal number of
zeros and poles and possess a specified half magnitude
frequency. It is worth noting that not all the zeros are restricted
to lie on the unit circle, as is the case for some previous design
techniques for filters having an unequal number of poles and
zeros. The method consists of the use of a fermula and
polynomial root finding. No phase approximation is done; the
approximation is in the magnitude squared as are the classical
IIR filters types.

Another result of the paper is that for a specified number of
zeros and a specified half magnitude frequency, there is only one
valid way to divide the number of zeros between z = -1 and the
pass band.

Given a half-magnitude frequency wy, the filters produced by
the formulas described below are optimal (maximally at) in the
following sense: the maximum number of derivatives at wy= 0
and wp = & are set to zero, under the constraint that the filters
possesses the half-magnitude frequency w, and a monotonic
frequency response magnitude.

II. GENERAL INSTRUCTIONS

Let H (z) = B(zYA(z) denote the transfer function of a digital
filters. Its frequency response magnitude is given by |H(e™)|.
Throughout this paper, the degree of B(z) will be denoted by
L+M, where L is the number of zeros at z = -1 and A/ is the
number of remaining zeros. The zeros at z = -1 produce a flat
behavior in the frequency response magnitude at w = z, while
the remaining zeros, together with the poles, are used to produce
a flat behavior at w = 0. The half-magnitude frequency is that
frequency at which the magnitude equals one half. Like the 3 dB
point, it indicates the location of the transition band. The
meanings of the parameters are shown in Table 1. It should be
noted that by *degree of flatness', the author means the number
of derivatives that are made to match the desired response,
including the 0” derivative.
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TaBLE I

NoOTATION
Parameters
L+M Total number of zeros
L Number of zeros at 7=-1
M Number of zeros contributing to the pass band
N Total number of poles
Wo Half-magnitude frequency
1
Xg =(1-coswg)
2
Flatness
LAM+N Total degree of flatness
M+N Degree of flatness at w=0
L Degree of flatness at w=n

III. DESIGN FORMULAS

The approach described below uses the mapping x =
1/2(1 - cosw) and provides formulas for two nonnegative
polynomials P(x) and Q(x). A stable IIR filters B(z)/4(z) is
obtained having a magnitude squared frequency response
|H(e™)|? given by

; pfd
ey S M
Z
Accordingly, F(x) = P(xyQ(x) is designed to approximate
a low pass response over x € [0.1]. B(z) and 4(z) are most
conveniently found by first computing the roots of P(x) and
Q(x) and by then mapping those roots to the z-plane via

z=1-2x+ ’1-2}(-1 (2)

For stable minimum-phase solutions, take the sign of the
square root yielding points inside the unit circle. The author
begins with the classical digital Butterworth filter. This
establishes notation and makes the generalization more
clear.

A, Classical Digital Butterworth Filter

Assume L=< N and A = 0, then the rational function F{x)
=P(x)Q(x) is given by

(-t

F(X): (1 - x) +exN

(3)

The classical Butterworth filters is obtained when N = L.
Note that |H(e™)*= F(1/2) = 1/(1+c.25%). Clearly, ¢ should
be chosen so that this value lies between 0 and 1. Therefore,
¢ must be greater than zero.

Choosing ¢ to achieve a specified half-magnitude
frequency is straight-forward. The equation |H(e™5)| = 1/2

becomes Flx,) = 1/4 where x, = 1/2(l-cos w,). Solving this
equation for ¢, one obtains ¢ = 3(1 - x.0%x," Because this
expression is positive for all x,€ (0,1), any half-magnitude

w, € (0,7)1s achievable when . < ¥V and A4 = 0.

B.  First Generalization

For the first generalization, assume L > ¥, A = 0. Then,
introducing the notation 7y for polynomial truncation
(discarding all terms beyond the N™ power), F(x) can be written
as

(19"

Fix)= _TN { (l-x)L}Jr T

“4)

The term, ¢, is the free parameter that, as in the classical case,
can be chosen to achieve a specified half-magnitude frequency,
and must be chosen to lie within an appropriate range. The
allowable ranges for ¢ are given in Table 2. When ¢ is chosen to
lie in the ranges shown in the table, F(x) is obtained as shown in
the following range:0 < Fix) < 1 for x€(0,1).

To choose ¢ to achieve a specified half-magnitude frequency
w,, solve Fix,) = 1/4 for ¢. This yield

& L
4(1-xg) - x x
RN (L) -
B
The value of this expression given for ¢ may or may not lie in
the appropriate range shown in Table 2. If it does not, then the
specified half-magnitude frequency is too high for the current
choice of L and N. It should be noted that, although the pass
band can be made arbitrarily narrow, it cannot be made
arbitrarily wide for a fixed L and V (when L > N).

TasLE 1T
PERMISSIELE RANGES FOR C FOR THE FIRST GENER ALIZATION

Neven C=0
N odd C= (L' 1)
N
Taple I

THE NUMBER AND LOCATIONS OF THE REAL RooTS OF Fif(l - 30" + cx - 4(1 -
N =0FoRL>N=>0

L even L odd
N even 2 real roots: 1 real root:
=0 x1€(0,1).3>1 x€(0,1)
Nodd 2 real roots: 3 real roots:
= (LI\'II) %, €(0,1),x,-1 % €(0,1).%,=1,x5>1

The greatest half-magnitude frequency achievable for a fixed
L and &V can be found by setting ¢ equal to the appropriate value
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shown in Table 2 and solving (5) for x,. It is seen that x, is a
root of the polynomial

Tf( - +ex™ - 41 -x)"=0 ()
Note that x, should lie in (0,1). When L > & > 0, this

polynomial has exactly one real root in (0,1). The number

and locations of the real roots of (5) are given in Table 3.

IV. DESIGN EXAMPLE

Pole zero Plot
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Fig. 1 L=6, M=0, N=1. The poles at the origin are not shown in figure.

Frequency Reponse
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Fig. 2 Magnitude of the digital IIR filter

For L = 6 and N =4, the boundary value for ¢ from Table
2 is 0 (V is even), so the polynomial equation (6) becomes:
Trd(1 - )™ ex-4(1- x)" = 0. Il rools are: 3.9476; 0.3798 +
1.1659j; 0.426240.3245;; 0.4404. Therefore, for this choice
of L and N, x, must lie in (0, 0.4404], so w, must lie in (0,
0:4620x]. To obtain filters having wider pass bands with the
same number of zeros and (nontrivial) poles, it is necessary
to move at least one zero from x = 1 (z = -1) to the pass

band. The experimental results are shown in Fig. land Fig.
2.
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Fig. 3 Test Results of the digital TIR filter

V. CONCLUSIONS

By using appropriate formulas, by computing polynomial
roots, and by employing a transformation (1), maximally at IIR
filters having more zeros than poles (away from the origin) can
be casily designed - and without the restriction that all zeros lic
on the unit circle. The technique presented allows for the
continuous variation of the half-magnitude frequency. In
addition, for fixed numerator and denominator degrees and a
fixed half-magnitude frequency, the formulas above give a direct
way of finding the correct way to split the number of zeros
between z = -1 and the pass band.
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